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Abstract
In this paper we obtain symmetry reductions of the system of two coupled
parabolic partial differential equations which model the evolution of turbulent
bursts using the classical Lie method of infinitesimals. The reduction to
systems of ordinary differential equations (ODEs) are obtained from the optimal
system of subalgebras. These systems admit symmetries which lead to further
reductions. An algorithm presented by Bluman for reducing the order of ODEs
allows us to reduce some of these systems, invariant under a two-parameter
group, directly to first-order ODEs systems. The hidden symmetries of some
of these systems are obtained and some new exact solutions have been derived.

PACS numbers: 0230J, 0220, 0230, 4727E

1. Introduction

The propagation of turbulent bursts is a problem of great interest, Barenblatt [3] proposed
an equation as a mathematical model for the propagation of turbulent bursts from a plane
source, Kamin and Vazquez [19] and Hastings and Peletier [16] have studied this one-equation
turbulence model.

The aim of this paper is to study the following system of partial differential
equations (PDEs) which models the evolution of turbulent bursts:

ut = a

(
u2ux

v

)
x

− v vt = b

(
u2vx

v

)
x

− c
v2

u
. (1.1)

Here x is the spatial coordinate, t the temporal coordinate, u(x, t) the turbulent energy density,
v(x, t) the dissipation rate of turbulent energy, and a, b, c are positive dimensionless constants.
In the literature this model is called the b–ε model which is the original notation introduced
by Kolmogorv [20] and is also referred to as the k–ε model.

The system (1.1) is derived (cf [5, 21]) under the assumptions that:

(i) the average velocity of the flow is identically zero; and
(ii) there exists some kind of statistical space homogeneity which reduces the model to an

one-dimensional system.

0305-4470/01/183751+10$30.00 © 2001 IOP Publishing Ltd Printed in the UK 3751



3752 M S Bruzón et al

The system consists of two coupled parabolic PDEs which contain the singular functions
u2/v and v2/u. As far as we know, hardly any mathematical results are available for the
system (1.1). Barenblatt et al [4] found that in the case when a = b = 1 and c > 3

2 the
system (1.1) possesses a three-parameter family of similarity solutions. Recently Bertsch
et al [5] presented a mathematical analysis of this system. They proved that for a = b and
c > 1, the system (1.1) has a solution if initially u and v has the same support. If c > 0 the
system has a family of self-similar solutions and the solutions of the system (1.1) converges
to one of these self-similar solutions. If a �= b, to our knowledge, there are only a few results
for (1.1) available in the literature; some numerical results were obtained by Barenblatt et al [4].

Symmetries of nonlinear PDEs systems may be used to reduce the number of independent
variables of the PDEs; in particular, we might reduce the PDEs to ordinary differential equations
(ODEs). The ODE systems may also have symmetries that allow us to reduce the order of
one or of both ODEs, and we can integrate to find exact solutions. Often solutions of the
nonlinear PDE system will be asymptotic to the symmetry solutions. Explicit solutions (such
as those found by symmetry methods) can also play an important role in the design and testing
of numerical integrators [22].

In this paper we discuss symmetry reductions of the system (1.1), using the classical
Lie method of infinitesimals. The fundamental basis of this technique is that, when a
system of differential equations is invariant under a Lie group of transformations, a reduction
transformation exists. The machinery of Lie group theory provides the systematic method to
search for these special group-invariant solutions. For systems of PDEs with two independent
variables, as it is the system (1.1), a single group reduction transforms the system of PDEs
into a system of ODEs, which are generally easier to solve than the original system. Most of
the required theory and a description of the method can be found in [8, 9, 17, 18, 22–24].

To apply the classical method to the system (1.1) we consider the one-parameter Lie group
of infinitesimal transformations in (x, t, u, v) given by

x∗ = x + εX(x, t, u, v) + O(ε2)

t∗ = t + εT (x, t, u, v) + O(ε2)

u∗ = u + εU(x, t, u, v) + O(ε2)

v∗ = v + εV (x, t, u, v) + O(ε2)

(1.2)

where ε is the group parameter. One then requires that this transformation leaves invariant
the set of solutions of the system (1.1). This yields to an overdetermined, linear system of
equations for the infinitesimalsX(x, t, u, v), T (x, t, u, v),U(x, t, u, v) andV (x, t, u, v). The
associated Lie algebra of infinitesimal symmetries is the set of vector fields of the form

v = X(x, t, u, v)
∂

∂x
+ T (x, t, u, v)

∂

∂t
+ U(x, t, u, v)

∂

∂u
+ V (x, t, u, v)

∂

∂v
. (1.3)

Having determined the infinitesimals, the symmetry variables are found by solving the invariant
surface conditions

�1 ≡ X
∂u

∂x
+ T

∂u

∂t
− U = 0 �2 ≡ X

∂v

∂x
+ T

∂v

∂t
− V = 0. (1.4)

In general, if a system of differential equations admits a Lie group Gr and its Lie algebra Lr

is of dimension r > 1, one could, in principle, consider invariant solutions based on one, two,
etc,-dimensional subalgebras of Lr . However, there is an infinite number of subalgebras, for
example, one-dimensional subalgebras. This problem becomes manageable by recognizing
that if two subalgebras are similar, i.e., they are connected with each other by a transformation
from the symmetry group (with Lie algebra Lr ), then their corresponding invariant solutions
are connected with each other by the same transformation. Therefore, it is sufficient to put into
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one class all similar subalgebras of a given dimension, say s, and select a representative from
each class. The set of all these representatives of all these classes is called an optimal system of
orders [23]. In order to find all invariant solutions with respect to s-dimensional subalgebras,
it is sufficient to construct invariant solutions for the optimal system of order s. The set of
invariant solutions obtained in this way is called an optimal system of invariant solutions. Of
course the form of these invariant solutions depends on the choice of the representatives.

Since the system (1.1) has two independent variables, we only consider one-parameter
subgroups. We have already seen that the problem of finding an optimal system of subgroups is
equivalent to that of finding an optimal system of subalgebras. Although in general this latter
problem can still be quite complicated, for one-dimensional subalgebras, this classification
problem is essentially the same as the problem of classifying the orbits of the adjoint
representation. The construction of the one-dimensional optimal system appears in [23] using
a global matrix for the adjoint transformation. Olver [22] uses a slightly different technique
which we will follow. Using this we construct a table showing the separate adjoint actions of
each element in Lr as it acts on all other elements, this construction is easily done by summing
the corresponding Lie series. We then consider a general element in a basis of Lr and ask
whether it can be transformed into a new element of a simpler form by subjecting it, iteratively,
to various adjoint transformations. For further details and proofs see [13, 22].

The second-order ODE systems obtained from the optimal system of subalgebras admit
symmetries that lead to further reductions. The invariance of a system of two second-order
ODEs under a one-parameter group allow us to reduce the order of one of the equations by
1 [22]. However, if the system is invariant under a two-parameter Lie group and we reduce
the order of one of the equations we may lose or gain Lie group symmetries which are called
hidden symmetries. In case the system of ODEs is invariant under a two-parameter Lie group
we apply an algorithm proposed by Bluman [6] that allow us to reduce directly the system of
second-order ODEs to a system of two first-order ODEs. It also happens that the invariance
under a normal subgroup allow us to reduce the second-order ODE system to a first-order
PDE system, which inherits some additional symmetry allowing us to reduce this system to a
first-order ODE system.

The structure of this paper is as follows. In section 2 we study the Lie symmetries of the
system (1.1), its Lie algebra as well as the corresponding optimal system. We also report the
reduction obtained from the optimal system of subalgebras. These systems admit symmetries
which lead to further reductions, we find some hidden symmetries of these systems and obtain
some exact solutions. In section 3 we study the Lie symmetries for the special case a = b, by
reducing the system to an unique PDE. Finally in section 4 we draw some conclusions.

2. Lie symmetries for the system (1.1)

Applying the classical method to system (1.1) yields a system of 16 equations which lead to a
four-parameter Lie group. Associated with this Lie group we have a Lie algebra which can be
represented by the generators, these generators are

v1 = ∂

∂x
v2 = ∂

∂t

v3 = x
∂

∂x
+ 2u

∂

∂u
+ 2v

∂

∂v
v4 = t

∂

∂t
− 2u

∂

∂u
− 3v

∂

∂v
.

In order to construct the one-dimensional optimal system {ui}, following Olver, we
construct a table showing the separate adjoint actions of each element in vi , i = 1 . . . 4,
as it acts on all other elements. This construction is done easily by summing the Lie series.
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Table 1. Commutator table for the Lie algebra {vi}.
v1 v2 v3 v4

v1 0 0 v1 0
v2 0 0 0 v2

v3 −v1 0 0 0
v4 0 −v2 0 0

Table 2. Adjoint table for the Lie algebra {vi}.
Ad v1 v2 v3 v4

v1 v1 v2 v3 − εv1 v4

v2 v1 v2 v3 v4 − εv2

v3 eεv1 v2 v3 v4

v4 v1 eεv2 v3 v4

Table 3. Infinitesimal generators {ui} of the optimal system and similarity variable and similarity
solutions.

ui z u v

1 v3 + µv4 xt−1/µ t−2−2/µf (z) t−3−2/µg(z)

2 µv2 + v3 xe−t/µ e2t/µf (z) e2t/µg(z)

3 µv1 + v4 x − µ ln t t−2f (z) t−3g(z)

4 µv1 + v2 x − µt f (z) g(z)

5 v3 t x2f (t) x2g(t)

6 v4 x t−2f (x) t−3g(x)

Table 4. ODE systems to which the PDE systems are reduced to by ui .

E1
i (f, g, f

′, g′, f ′′) = 0 E2
i (f, g, f

′, g′, g′′) = 0

S1

(
zf

µ
+
af 2f ′

g

)′
+ 2f − 3f

µ
− g = 0

(
zg

µ
+
bf 2g′

g

)′
+ 3g − 3g

µ
− cg2

f
= 0

S2

(
1

µ
zf + a

f 2f ′

g

)′
− 3

µ
f − g = 0

(
1

µ
zg + b

f 2g′

g

)′
− 3

µ
g − c

g2

f
= 0

S3

(
µf + a

f 2f ′

g

)′
+ 2f − g = 0

(
µg + b

f 2g′

g

)′
+ 3g − c

g2

f
= 0

S4

(
af 2f ′

g
+ µf

)′
− g = 0

(
bf 2g′

g
+ µg

)′
− cg2

f
= 0

S5 f ′ + g − 6af 3

g
= 0 g′ − 6bf 2 +

cg2

f
= 0

S6

(
af 2f ′

g

)′
+ 2f − g = 0

(
bf 2g′

g

)′
+ 3g − cg2

f
= 0

In table 3, we list the nontrivial optimal system {ui} with i = 1, . . . , 6, where µ ∈ R
∗ is

arbitrary. We also list the corresponding similarity variables and similarity solutions.
In table 4 we list the system of ODEs obtained when the system (1.1) is reduced by means

of {ui}, i = 1, . . . , 6; note: ′ ≡ d/dz.
We observe that the similarity variable and similarity solutions are the same as those

obtained for the porous medium equation with n arbitrary [14]. In several cases, the reduced
systems of ODEs admit symmetries which lead to further reductions and we shall again use the
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Table 5. Special values of a, b and c and exact solutions.

a b c u v

Arbitrary Arbitrary �= 1 x1/2t1/(1−c)
x1/2tc/(1−c)

c − 1

Arbitrary Arbitrary 3 − b

a
− x2

6at2
− x2

6at3

Arbitrary Arbitrary 1 e3t/(2µ)x1/2 − 3

2µ
e3t/(2µ)x1/2

techniques of Lie group theory. The system Si , i = 1, . . . , 6 gives the following symmetries:

S1 : v11 = z
∂

∂z
+ 2f

∂

∂f
+ 2g

∂

∂g

S2 : v21 = z
∂

∂z

S3 : v31 = ∂

∂z

S4 : v41 = ∂

∂z
v42 = −z

∂

∂z
+ g

∂

∂g
[v41, v42] = −v41

S5 : v51 = ∂

∂z
v52 = z

∂

∂z
− 2f

∂

∂f
− 3g

∂

∂g
[v51, v52] = v51

S6 : v61 = ∂

∂z
v62 = z

∂

∂z
+ 2f

∂

∂f
+ 2g

∂

∂g
[v61, v62] = v61.

The invariance of an second-order system under a one-parameter group allows us to reduce
the order of one of the equations in the system by 1. Although we have not been able to integrate
the systems Si , i = 1, . . . , 3, in full generality, in table 5 we list some exact solutions.

Olver [22] gave an existence theorem which shows that if an nth order ODE admits an
r-parameter solvable Lie group of transformations, then its general solution can be found by
quadratures from the general solution of an (n − r)th order ODE. However, this existence
theorem does not yield an iterative reduction algorithm. An iterative algorithm was presented
by Bluman [6] for reducing an nth order ODE to an (n − r)th order ODE plus r quadratures
when it admits an r-parameter solvable Lie group of transformations. As far as we know there
are not explicit results for systems of second order ODEs. We applied an algorithm proposed
by Bluman for reducing the order of ODEs for this system of ODEs.

In accordance with this method, we write the first extension of v42 in terms of the invariants
of v

(1)
41 : f = g1, g = g2, f ′ = h1, g′ = h2. Then, we have

v
(1)
42 = g2

∂

∂g2
+ h1

∂

∂h1
+ 2h2

∂

∂h2
.

Now, S4 can be reduced to a first-order system of ODEs in terms of the invariants of v
(1)
42 . This

means using the new variables: w = g1, h1 = g2M(g1), h2 = g2
2N(g1). In terms of these

new variables S4 becomes

M

(
2ag1M + ag2

1
dM

dg1
+ µ

)
− 1 = 0 (2.1)

g1

(
bg2

1N
2 + µN + 2bg1MN + bg2

1M
dN

dg1

)
− c = 0. (2.2)

The invariance of S4 under the one-parameter group with the infinitesimal generator v41

allows us to reduce the order of one of the equations by 1, the invariance of S4 under v41 also



3756 M S Bruzón et al

leads to the system of first-order PDEs. Both systems under v42 lead to (2.1). However, the
invariance of S4 under v42 lead to a different system of first-order PDEs which does not inherit
the symmetry v41.

This is illustrates an important point. If we reduce the order of one of the equations of a
system of second-order ODEs, or if we reduce the second-order ODE system to a system of
first-order PDEs we may lose any additional symmetry properties present in the full group. The
existence of these kind of symmetries was pointed out by Olver in the reduction by the non-
normal subgroup variables of a second-order ODE, and was denoted by Abraham-Shrauner
and Guo [1] as type I hidden symmetry. Only special types of subgroups, namely the normal
subgroups, which in this case is v41, will enable us to retain the full symmetry properties under
reduction. It should also be noted that although the system obtained by reducing S4 under v42

has no symmetry properties, which reflect the symmetry of S4 under the group generated by
v41, we are able to reduce it to (2.1) by first changing it into the second-order ODE system,
and then reducing this system.

As system S5 is an autonomous first-order system, we can reduce it to a single first-order
equation plus a quadrature. We have the equivalent system

dg

df
= g(cg2 − 6bf 3)

f (g2 − 6af 3)

dz

df
= g

6af 3 − g2
. (2.3)

For b �= 3
2a and c �= 3

2 the solution of (2.3) is in implicit form

f 2c/(2c−3)[(2c − 3)g2 + (18a − 12b)f 3]2ac−2b/[(4b−6a)c−6b+9a] − k g2a/(2b−3a) = 0

where k is an arbitrary constant. Some particular cases for which we can write explicit solutions
for the system (1.1) are as follows.

If k = 0 and c �= b/a we have

u(x, t) = (2 b − 3 a) (2 c − 3) x2

6 (a c − b)2 t2
v(x, t) = − (2 b − 3 a)2 (2 c − 3) x2

6 (a c − b)3 t3

whilst if b = 2a, and c = 2 we obtain

u(x, t) = − k2
1x

2

exp(k1t + k2) − 6a
v(x, t) = − 6ak3

1x
2

[
exp(k1t + k2) − 6a

]2 .

For b = 3
2a and c = 3

2 the corresponding solution for (1.1) is given by

u(x, t) = 4kx2

(k − 6a)2t2
v(x, t) = 8k2x2

(k − 6a)3t3
.

Using the same algorithm in S4, means that v
(1)
62 in terms of the invariants of v61, can be

written as

v
(1)
62 = 2g1

∂

∂g1
+ 2g2

∂

∂g2
+ h1

∂

∂h1
+ h2

∂

∂h2

and S6 can be reduced to a first-order system of ODEs by using the invariants of v
(1)
62 namely

w = g1/g2, h1 = g
1/2
1 M(w), h2 = g

1/2
2 N(w). Then we have

5aw2M2 + 2aw3M
dM

dw
− 2aw7/2N

dM

dw
− 2aw5/2MN + 4w − 2 = 0

4bw5/2MN − bw3N2 + 2bw5/2M
dN

dw
− 2bw4N

dN

dw
+ 6w − 2c = 0.

(2.4)

The invariants of v61 also lead to a system of first-order PDEs and the invariance of this PDE
system under v62 leads to (2.4). Nevertheless the invariance of S6 under v62 leads to a different
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Table 6. Optimal system, similarity variables and similarity solutions.

ui z v

1 v1 t h(z)

2 v2 t x2h(z)

3 µv2 + v3 x t−µ t2µ−3 h(z)

4 µv1 + v3 x − µ ln t t−3 h(z)

5 µv2 + v4 x exp

{
−µ

c − 1

(2c − 3)
t(2c−3)/(c−1)

}
t−c/(c−1) exp

{
2µ

c − 1

2c − 3
t (2c−3)/(c−1)

}
h(z)

6 λv1 + v4 x − λ
c − 1

2c − 3
t (2c−3)/(c−1) t−c/(c−1)h(z)

7 µv2 + ṽ4 x(ln t)−µ t−3(ln t)2µ−1h(z)

8 λv1 + ṽ4 x − λ ln | ln t | t−3(ln t)−1h(z)

system of first-order PDEs which is not invariant under v61 and thus this symmetry is a hidden
symmetry.

We must remark that many engineering and science problems may be reduced to nonlinear
systems of ODEs, which are invariant only under a one-parameter Lie group. However, the
reduced system may be invariant under an additional one-parameter group which is not a
symmetry group of the original ODE system. This group invariance will not be found by the
usual Lie method applied to the original system, and is consequently a hidden symmetry of
the second-order ODE system. This kind of hidden symmetries were obtained for ODEs by
Abraham-Shrauner and Guo [2], and are called hidden symmetries of type II. We have not find
any of these symmetries in the Si systems, i = 1, . . . , 6.

3. New Lie symmetries and reductions for the special case a = b

In the special case when a = b, it is easy to see that by imposing u = (c−1)tv the system (1.1)
is reduced to the following equation:

(c − 1)tvt − a(c − 1)3t3(vvxx + v2
x) + cv = 0. (3.1)

This equation is invariant under a four-parameter Lie group whose infinitesimals are as follows.
If c �= 3

2 :

v1 = ∂

∂x
v2 = x

∂

∂x
+ 2v

∂

∂v

v3 = t
∂

∂t
− 3v

∂

∂v
v4 = t c/(1−c) ∂

∂t
− t (2c−3)/(1−c)v

∂

∂v

whilst if c = 3
2 :

v1 = ∂

∂x
v2 = x

∂

∂x
+ 2v

∂

∂v

v3 = t
∂

∂t
− 3v

∂

∂v
ṽ4 = t lnt

∂

∂t
− (3lnt + 1) v

∂

∂v
.

By proceeding in the same way as for system (1.1), we can now construct the one-
dimensional optimal system. We list this in table 6, for c �= 3

2 it is given by {ui} with
i = 1, . . . , 6, whilst for c = 3

2 the optimal system is given by {ui} with i = 1, . . . , 4, 7 and
8; where µ ∈ R

∗ and λ ∈ R are arbitrary constants. We also list the corresponding similarity
variables and similarity solutions.

In table 7, we list the ODEs to which (3.1) is reduced by {ui}, i = 1, . . . , 8.
Some exact solutions have been obtained for these equations as follows.



3758 M S Bruzón et al

Table 7. ODEi .

ODEi

1 (c − 1)zh′ + ch = 0
2 (c − 1)zh′ − 6a(c − 1)3z3h2 + ch = 0
3 a(c − 1)3(hh′)′ + µ(c − 1)zh′ − [(c − 1)(2µ − 3) + c]h = 0
4 a(c − 1)3(hh′)′ + (c − 1)µh′ + (2c − 3)h = 0
5 a(c − 1)2(hh′)′ + µzh′ − 2h = 0
6 a(c − 1)2(hh′)′ + λh′ = 0
7 a(hh′)′ + 4µzh′ + 4(1 − 2µ)h = 0
8 a(hh′)′ + 4λh′ + 4h = 0

• ODE1 is a linear first-order equation, then it can be trivially solved, and the corresponding
solution for equation (3.1) is given by

v(x, t) = k tc/(1−c)

where k is an arbitrary constant.
• ODE2 is a Bernouilli equation, the corresponding solution for (3.1) is given by

v(x, t) = (2c − 3)x2

ktc/(1−c) − 6a(c − 1)3t3
if c �= 3

2

v(x, t) = 2x2

(2k − 3aln t)t3
if c = 3

2
.

• If c �= 3
2 we can choose µ = 2c−3

3(c−1) in ODE3, then it can be easily integrated once, and we
find for (3.1) the one-parameter family of solutions

v(x, t) = t−3

[
kt2µ − µx2

2a(c − 1)2

]

with k being an arbitrary constant.
• In the case of c = 3

2 one can get solutions for ODE4, in particular a solution of (3.1)
obtained in this way is given by

v(x, t) = − 4µ

at3
(x − µlnt) .

• By choosing µ = −2 in ODE5 we get for (3.1)

v(x, t) = t−c/(c−1) x2

a(c − 1)2
.

• The general solution for ODE6 is given in implicit form by

a(c − 1)2λh + a(c − 1)2k1ln|λh − k1| = −λ2(z + k2) (3.2)

with k1 and k2 being arbitrary constants; (3.2) leads to a three-parameter family of solutions
of (3.1).

• By choosing µ = 1
3 in ODE7 we get the one-parameter family of solutions of (3.1)

v(x, t) = t−3 (lnt)−1/3

[
k − 2x2

3a(lnt)1/3

]
.

• If we take λ = 0 in ODE8, it can be found that∫
h(k1 − h3)−1/2 dh = ±2

√
2

3a
(z + k2).
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4. Concluding remarks

As far as we know, this is the first symmetry analysis of the system (1.1). In order to understand
properly the importance of this symmetry analysis, we point out that this model is derived under
the similarity hypothesis of Kolmogorov, which reads: In processes consisting in exchange
and dissipation of turbulent energy, the structure of the field of turbulent bursts is statistically
identical in the neighbourhood of each point of the flow.

According to this, the structure of the field of turbulent burst does not depend on each
point. This fact strongly suggests that solutions with physical insight must be asymptotically
self-similar solutions. This means that similarity solutions are limiting solutions as t → ∞
Explicit solutions (such as those found by symmetry methods) can also play an important role
in the design and testing of numerical integrators [22].

In this paper we have obtained the Lie classical symmetries of (1.1). In general the groups
that leave the system (1.1) invariant depend on several parameters, to each one-parameter
subgroup there will correspond a family of group-invariant solutions. We desired to minimize
the search for group-invariant solutions to that of finding nonequivalent branches of solutions,
which leads to the concept of an optimal system of group-invariant solutions from which many
other solutions can be derived. To obtain the one-dimensional optimal systems of solutions,
following Olver [22], we have looked for the one-dimensional optimal systems of subalgebras.
We then constructed all the invariant solutions with respect to the one-dimensional optimal
system of subalgebras, as well as all the ODEs to which the system (1.1) is reduced. We
list the different similarity variables similarity solutions, as well as the second-order ODE
system to which the system (1.1) is reduced. These systems obtained from the optimal system
of subalgebras admit symmetries that lead to further reductions. S1, S2 and S3 admit one
symmetry, while S4, S5 and S6 admit two symmetries. The invariance of a system of two
second-order ODEs under a one-parameter group allows us to reduce the order of one of
the equations of S1, S2, and S3 by one. The invariance of S4 and S6 allows us to reduce
them directly to systems of first-order ODEs. This can also be done in two steps, first
reducing the order of one of the equations or reducing to a first-order PDE system, and
then reducing these systems to first-order ODE system. Using these reduced equations some
exact solutions have been derived. For the special case when a = b the system (1.1) may
be reduced to a PDE and additional symmetries has been obtained that yield solutions that
cannot be derived from classical symmetries of (1.1). A comparison of the numerical and
experimental results seems to conclude that the undetermined but fixed parameters satisfy
a = b, but in [15] we studied equation (3.1) determining some solutions with a more applied
character.

As the direct method due to Clarkson and Kruskal [11] has been successfully applied to
obtain many new symmetry reductions for several physically significant PDEs (cf [10,12] and
the references therein), we have applied this method to the system (1.1). However, we have
found that the symmetry reductions arising from the classical and direct method coincide.
Another, more general method is the nonclassical method originally proposed by Bluman and
Cole [7]. Nevertheless, for the system (1.1) we find again that it yields the same reductions as
the classical method.

We must point out that, although the similarity-type behaviour has similar results to that
of the porous medium equation [14], the porous medium equation has different reductions
obtained from the nonclassical method. The question proposed by Clarkson [10] is to determine
a priori which PDEs possess symmetry reductions which are unobtainable using the classical
Lie group approach.
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